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Chapter 2

Executive Summary

This research effort represents our investigation on the problem of statistical analysis of the
non-homogeneity detector for non-Gaussian interference scenarios. An important issue in
STAP is that of homogeneity of training data. Non-homogeneity of the training data has a
deleterious effect on STAP performance in that undernulled clutter significantly degrades
detection and false alarm characteristics. Previous work in this area has proposed the use
of a non-homogeneity detector (NHD) based on a generalized inner product (GIP). The
unsuitability of the GIP based test for non-Gaussian interference scenarios is noted. We
present a new nonhomogeneity detector for non-Gaussian interference scenarios which
can be modeled by a spherically invariant random process (SIRP). Our work includes
a statistical analysis of the NHD for non-Gaussian interference taking into account the
fact that finite sample support is used for covariance estimation. In particular, exact
theoretical expressions for the NHD test statistic PDF and the mean of a related test
statistic are derived. We also note that the related test statistic admits a remarkably
simple stochastic representation as a ratio of an F-distributed random variable and a
beta-distributed loss factor. Based on this development, a formal goodness-of-fit test is
presented. Performance analysis is carried out using simulated and measured data from
the MCARM Program.



Chapter 3

Statistical Analysis of the
Nonhomogeneity Detector for
Non-Gaussian Interference
Backgrounds

3.1 Introduction

An important issue in space-time adaptive processing (STAP) for radar target detection
is the formation and inversion of the covariance matrix underlying the clutter/ interfer-
ence. In practice, the unknown interference covariance matrix is estimated from a set of
independent identically distributed (iid) target-free training data which is assumed to be
representative of the interference statistics in a cell under test. Frequently, the training
data is subject to contamination by discrete scatterers or interfering targets. In either
event, the training data becomes nonhomogeneous. As a result, it is non representative of
the interference in the test cell. Estimates of the covariance matrix from nonhomogeneous
training data result in severely undernulled clutter. Consequently, CFAR and detection
performance suffer. Significant performance improvement can be achieved by employing
pre-processing to select representative training data.

The problem of target detection using improved training strategies has been considered
in [1-8]. The impact of nonhomogeneity on STAP performance is considered in [8-11].
The works of [1-4,8,12] have addressed the use of the non-homogeneity detector (NHD)
based on the generalized inner product (GIP) measure for STAP problems involving
Gaussian interference scenarios. This work was extended significantly in [13,14] to include
the effects of finite sample support used for covariance matrix estimation. However,
the corresponding problem for non-Gaussian interference scenarios has received limited
attention.

In this paper, we derive the NHD for non-Gaussian interference scenarios, which can
be modeled by spherically invariant random processes (SIRP) and present a statistical
analysis of the resultant NHD test statistic. In general, the problem of non-homogeneity
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detection for SIRDs is quite difficult due to the fact that the underlying SIRP covariance
matrix and characteristic PDF are unknown. For convenience, knowledge of the SIRP
characteristic PDF is assumed in this paper.

3.2 Preliminaries

Let x = [z1 ¥ ...zm|T denote a complex spherically invariant random vector (SIRV)
having zero mean, positive definite Hermitian covariance matrix R and characteristic PDF
fv(v). The PDF of x is given by [15]

f(z) =7 MR| han(g) (3.1)
where |.| denotes determinant and

g=x"Rx
P () = J5° 0P erp(~ %) fu (0)do.

Every SIRV admits a representation of the form [16] x = 2V, where z has a complex-
Gaussian PDF, CN(0,R), and V is a statistically independent random variable with PDF
fv(v). In practice, R and fv(v) are unknown. For the purpose of this paper, we assume
knowledge of fi-(v) and treat the problem of non-homogeneity detection with respect to
unknown R.

Previous work [1-4,8,12-14] employed the GIP based NHD for Gaussian interference
scenarios. However, the GIP based method relying on the statistics of Q@ =x" R™x is un-
suitable for SIRV interference scenrios. This is due to the fact that the covariance matrix
estimate for this problem can be obtained to within a constant of the covariance matrix
underlying the Gaussian component of the SIRV. Typically, this constant is unknown in
practice. Consequently, the PDF of @, its moments, and the threshold setting for the
goodness-of-fit test proposed in [13] cannot be determined. Consequently, we seek a test
statistic, which is invariant to the unknown scaling.

(3.2)

3.3 Nonhomogeneity Detector for Non-Gaussian In-
terference Scenarios

Let x ~ SIRV[0, Ry, fv(v)] denote the complex SIRV test data vector, where Ry is
unknown. Further, x;,i=1,2,...K ~ SIRV|[0, R, fv(v)] denote iid target free training
data. For homogeneous training data, R = R, = R. The first step in deriving the NHD
detector for SIRVs involves obtaining the maximum likelihood estimate of the underlying
covariance matrix. This estimate is then used in a test statistic which exhibits maximal
invariance with respect to the unknown scaling of the estimated covariance matrix. The
resulting test statistic takes the form of a normalized adaptive matched filter (NAMF),
which has been extensively analyzed in [17,18] and references therein.



3.3.1 Covariance Matrix Estimation

The unknown covariance matrix is estimated from target free training data consisting of
independent identically distributed SIRVs sharing the covariance matrix of the noise n
the test cell. Maximum likelihood (ML) estimation of the covariance matrix for SIRVs
was first considered in [19]. The work of [19] showed that covariance matrix estimation
for SIRVs can be treated in the framework of a complete-incomplete data problem and
pointed out that the maximum likelihood estimate of the covariance matrix is a weighted
sample matrix. Since the problem does not permit a closed form solution, [19,20] uses an
iterative method known as the expectation-maximization (EM) algorithm. More precisely,
let x;, i = 1,2,..., K denote independent identically distributed training data sharing
the covariance matrix of the test data vector x. The work of [19,20] shows that the ML
estimate of the covariance matrix is given by

. 1 X
R= X > cixxd (3-3)
i=1 .
where ,
o hoyle)
, c’é; han (9i) (3.4)
hon (W) = —%ﬂ = —harr42(w)

and ¢ = x¥ R7lx;, i = 1,2,... K. Clearly the transcendental nature of the estimate
precludes obtaining a closed form solution. Consequently, [19] used the EM algorithm to
obtain an iterative solution to the problem. We adopt the approach of {19] for obtaining
the covariance matrix estimate in this work. It can be readily shown that the EM algo-
rithm at convergence produces an estimate which is to within a multiplicative constant of
the covariance matrix estimate of the Gaussian component underlying the SIRV. Details
pertaining to the initial start and convergence properties of the EM algorithm can be
found in [19]. The next step is to use this estimate in a maximally invariant decision
statistic for non-homogeneity detection.

3.3.2 Maximally Invariant NHD Test Statistic

The maximal invariant statistic for different scaling of test and training data is given
by [17]

|SHR—1XI2
A = = = 3.5
NAMF SAR-Ts|xPR-'x] (3-5)
where s = \/—%[1 1 ...1]7. Invariance properties of the test statistic of eq (3.5) and

its geometrical representation have been studied in [17] and references therein for the
case of Gaussian interference statistics using a sample covariance matrix estimate. In
SIRP interference, however, each training data vector realization is scaled by a different
realization of V. Consequently, maximal invariance of the test statistic of eq (3.5) afforded
by the sample covariance matrix estimate no longer applies. This is due to the fact that the




sample covariance matrix is no longer the maximum likelihood estimate of the covariance
matrix for SIRV scenarios. However, using an estimated covariance matrix of the form of
eq (3.3) restores the maximal invariance property of the test statistic of eq (3.5). This is
due to the fact that the resultant covariance matrix estimate is to within a multiplicative
constant of the covariance matrix corresponding to the Gaussian component of the SIRV.

3.3.3 PDF and Moments of the Non-Gaussian NHD Test Statis-
tic

The PDF and moments of the NHD test statistic are readily determined in terms of the
corresponding quantities of an equivalent random variable defined by

ANamF (3.6)

A =
“ 1— ANamr

It has been shown in [17,21,22] that A, admits a representation as the ratio of an F-
distributed random variable and a beta-distributed loss factor. In this effort, we are
interested in the PDF of Ayanmp under the condition where no target is present in the
test data vector x. Specifically, it can be shown from the work of [17,21,22] that the PDF
of Ayanr is given by

L= e =)ty
Faname(r) = /0 - El — )]t (3.7)

where I = K — M + 1 and T is the loss factor random variable, whose PDF is given by

1
) = g -1

)7”(1 - M2 (3.8)

The mean of Ayanr is somewhat difficult to calculate. Consequently, we work with the

mean of A, given by
K

(K — M)(M —-2)
The statistical equivalence of A., to within a scalar of the ratio of a F-distributed random
variable and a beta-distributed loss factor in that it permits rapid calculation of the
moments of A,. More importantly, it is extremely useful in Monte-Carlo studies involving
simulation of Ayanr. For homogeneous training data, the use of (3.6) circumvents the
need to explicitly generate the test data vector x and the training data vectors used for
covariance estimation. For large M and perforce K, significant computational savings can
be realized from the method of (3.6). It is instructive to note that the PDF of AyamF
as well as its mean depend only on M and K, which are under the control of a system
designer, and not on nuisance paramters such as the true covariance matrix underlying
the interference scenario. Furthermore, for K — oo the mean of eq (3.9) converges to

E(Aeq) = (3.9)

1
E(Aeq) = @7_—'2_)’ corresponding to the mean of an F-distributed random variable.



3.3.4 Goodness-of-Fit Tests

Since the PDF and mean of Ay are known, a formal goodness of fit test can be used
for non-homogeneity detection in non-Gaussian interference scenarios. In particular, we
form empirical realizations of Ayamr from each training data realization using a moving
window approach. In this approach each training data vector is treated as a test cell
data vector, whose covariance matrix is estimated from neighboring cell data according
to eq (3.3). We then test for statistical consistency of these realizations of Ayayr with
the PDF of eq (3.7). For this purpose a convenient type-I error (typically between 0.01
and 0.1) given by

! fr(y)
Fe= /0 1+~ A (810)

is chosen. The threshold, 7, is determined by a numerical inversion of eq (3.10). Realiza-
tions of Ayanmr, which exceed 7 correspond to nonhomogeneous training data. A second
test for training data nonhomogeneity is based on comparing each realization of A, with
its theoretically predicted mean given by eq (3.9) and retaining those realizations which
exhibit the least deviation. Performance analysis of these NHD methods is presented in
the next section.

3.4 Performance Analysis

Performance of the goodness-of-fit test with simulated and measured data is presented
here. Figure 1 shows the plot of the PDF of Ayayr with K as a parameter. Observe
that the variance of Ayamr decreases with increasing K. Figure 2 shows a plot of the
Type-I error versus the threshold, n, with K as a parameter. For a given type-I error, the
threshold decreases with increasing K, in conformance with the results of Figure 1. Figure
3 shows the performance of the goodness-of-fit test for simulated homogeneous data from
the K-distribution [15] with shape parameter 0.5 using the covariance estimate of eq (3.3).
The results reveal the lack of nonhomogeneity in that no realization of Ay anr exceeds the
threshold. Figure 4 shows the performance of the goodness-of-fit test in non-homogeneous
K-dsitributed clutter with shape parameter 0.5. Nonhomogeneity of the data is evident in
those range bins where Ay 4ar exceeds 7. Figure 5 shows the results of the goodness of fit
test for the MCARM data [23] using acquisition 220 on Flight 5, cycle e for 8 channels and
16 pulses. The NHD test statistic, Ay amr, and the threshold, 7, are plotted as a function
of range. Statistical analysis of the data indicates that the data is well approximated
by the Gaussian distribution. This fact considerably simplifies the analysis in that the
covariance matrix estimate is simply the sample covariance matrix. Non-homogeneity of
the training data is evident in those bins for which Ayyp exceeds n. Figure 6 shows the
results from the selection procedure based on comparing the empirically formed A with
its theoretically predicted mean given by eq (3.9). The data set used for this example
is identical to the data used in Figure 5. Relevant test parameters are reported in the
plot. We observe a significant increase in the number of deviations from the thoretically
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predicted mean given by eq (3.9). This is due to the fact that we are dealing with a
limited number of realizations of the NHD test statistic.

3.5 Conclusion

This paper provides a rigorous statistical characterization of the NHD for non-Gaussian
interference scenarios which can be modeled as a spherically invariant random process. It
is noted that the NHD statistic admits a simple representation in terms of aratioofan F
distributed random variable and a beta distributed loss factor. A formal goodness-of-fit
test based on this representation, which follows a randomized F-distribution, is derived.
Performance analysis of the method is considered in some detail using measured data from
the MCARM program. The illustrative examples validate the approach taken and confirm
the results. Future work would include extensive performance analysis using simulated
and measured data showing the resulting impact on STAP performance. The performance
of several STAP algorithms in Gaussian and non-Gaussian interference scenarios has been
considered in [18]. Future work will address performance of the methods treated in [18]
with suitable NHD pre-processing.
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